
OMNeT++
Installation Guide
Version 6.0.3

Copyright © 1992-2021, András Varga and OpenSim Ltd.

Build: 240130-c0e83af2b6

CONTENTS

1 General Information 1
1.1 Introduction . 1
1.2 Supported Platforms . 1

2 Windows - Using the MinGW64 Compiler Toolchain 3
2.1 Supported Windows Versions . 3
2.2 Installing OMNeT++ . 3
2.3 Configuring and Building OMNeT++ . 3
2.4 Verifying the Installation . 4
2.5 Starting the IDE . 4
2.6 Environment Variables . 4
2.7 Reconfiguring the Libraries . 4
2.8 Portability Issues . 5
2.9 Additional Packages . 5

3 Windows - Using Windows Subsystem for Linux (WSL) version 2 7
3.1 WSL 2 Requirements . 7
3.2 Enabling WSL 2 on Windows . 7
3.3 Installing an Ubuntu distribution . 8
3.4 Install VcXserver . 8
3.5 Install OMNeT++ Linux . 9

4 macOS 11
4.1 Supported Releases . 11
4.2 Installing the Prerequisite Packages . 11
4.3 Enabling Development Mode in Terminal . 11
4.4 Debugging Unsigned Code . 12
4.5 Running OMNeT++ on Apple Silicon . 13
4.6 Additional Steps Required on macOS to Use the Debugger 13
4.7 Downloading and Unpacking OMNeT++ . 13
4.8 Environment Variables . 14
4.9 Configuring and Building OMNeT++ . 14
4.10 Verifying the Installation . 15
4.11 Starting the IDE . 15
4.12 Using the IDE . 15
4.13 Reconfiguring the Libraries . 15
4.14 Additional Packages . 16

5 Linux 17
5.1 Supported Linux Distributions . 17
5.2 Installing the Prerequisite Packages . 17
5.3 Downloading and Unpacking . 18
5.4 Environment Variables . 18
5.5 Configuring and Building OMNeT++ . 19
5.6 Verifying the Installation . 20

i

5.7 Starting the IDE . 21
5.8 Using the IDE . 21
5.9 Reconfiguring the Libraries . 22
5.10 Additional Packages . 22

6 Ubuntu 25
6.1 Supported Releases . 25
6.2 Opening a Terminal . 25
6.3 Installing the Prerequisite Packages . 25

7 Fedora 33 29
7.1 Supported Releases . 29
7.2 Opening a Terminal . 29
7.3 Installing the Prerequisite Packages . 29

8 Red Hat 31
8.1 Supported Releases . 31
8.2 Opening a Terminal . 31
8.3 Installing the Prerequisite Packages . 31
8.4 SELinux . 32

9 OpenSUSE 33
9.1 Supported Releases . 33
9.2 Opening a Terminal . 33
9.3 Installing the Prerequisite Packages . 33

10 Generic Unix 35
10.1 Introduction . 35
10.2 Dependencies . 35
10.3 Determining Package Names . 36
10.4 Downloading and Unpacking . 36
10.5 Environment Variables . 37
10.6 Configuring and Building OMNeT++ . 37
10.7 Verifying the Installation . 39
10.8 Starting the IDE . 39
10.9 Optional Packages . 40

11 Build Options 41
11.1 Configure.user Options . 41
11.2 Moving the Installation . 42
11.3 Using Different Compilers . 43

ii

CHAPTER

ONE

GENERAL INFORMATION

1.1 Introduction

This document describes how to install OMNeT++ on various platforms. One chapter is
dedicated to each operating system.

1.2 Supported Platforms

OMNeT++ has been tested and is supported on the following operating systems:

• Windows on x86_64 architecture

• MacOS 10.15 and 11.x on x86_64 architecture

• Linux distributions covered in this Installation Guide

The Simulation IDE is supported on the following platforms:

• Linux x86_64/aarch64

• Windows x86_64

• MacOS 10.15 and 11.x (x86_64)

Note: Simulations can be run practically on any unix-like environment with a decent and
fairly up-to-date C++ compiler, for example gcc 8.x. Certain OMNeT++ features (Qtenv, par-
allel simulation, XML support, etc.) depend on the availability of external libraries (Qt, MPI,
LibXML, etc.)

IDE platforms are restricted because the IDE relies on a native shared library, which we
compile for the above platforms and distribute in binary form for convenience.

1

Installation Guide, Release 6.0.3

2 Chapter 1. General Information

CHAPTER

TWO

WINDOWS - USING THE MINGW64 COMPILER TOOLCHAIN

2.1 Supported Windows Versions

OMNeT++ is supported only on 64-bit versions of Windows.

Note: 32-bit Windows versions are no longer supported. If you need 32-bit builds on
Windows, we recommend using OMNeT++ 5.0

2.2 Installing OMNeT++

Download the OMNeT++ source code from https://omnetpp.org. Make sure you select the
Windows-specific archive, named omnetpp-6.0.3-windows-x86_64.zip.

The package is self-contained: in addition to OMNeT++ files it includes a C++ compiler, a
command-line build environment, and all libraries and programs required by OMNeT++.

Copy the OMNeT++ archive to the directory where you want to install it. Choose a directory
whose full path does not contain any space; for example, do not put OMNeT++ under
Program Files.

Extract the zip file. To do so, right-click the zip file in Windows Explorer, and select Extract
All from the menu. You can also use external programs like Winzip or 7zip.

When you look into the new omnetpp-6.0.3 directory, should see directories named doc,
images, include, tools, etc., and files named mingwenv.cmd, configure, Makefile, and
others.

2.3 Configuring and Building OMNeT++

Start mingwenv.cmd in the omnetpp-6.0.3 directory by double-clicking it in Windows Ex-
plorer. It will bring up a console with the MSYS bash shell, where the path is already set to
include the omnetpp-6.0.3/bin directory. On the first start of the shell, you may need to
wait for the extraction of the tools directory.

Note: If you want to start simulations from outside the shell as well (for example from
Explorer), you need to add OMNeT++’s bin directory and also the bin directories in the tools
folder to the path; instructions are provided later.

First, check the contents of the configure.user file to make sure it contains the settings
you need. In most cases you don’t need to change anything.

3

https://omnetpp.org

Installation Guide, Release 6.0.3

notepad configure.user

Then enter the following commands:

$./configure
$ make

The build process will create both debug and release binaries.

2.4 Verifying the Installation

You should now test all samples and check they run correctly. As an example, the aloha
example is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the graphical Qtenv environment. You should see GUI
windows and dialogs.

2.5 Starting the IDE

OMNeT++ comes with an Eclipse-based Simulation IDE. You should be able to start the IDE
by typing:

$ omnetpp

We recommend that you start the IDE from the command-line. You can also create a shortcut
for starting the IDE. To do so, locate the opp_ide.exe program in the omnetpp-6.0.3/ide
directory in Windows Explorer, right-click it, and choose Send To > Desktop (create shortcut)
from the menu. You can right-click the taskbar icon while the IDE is running, and select Pin
this program to taskbar from the context menu.

2.6 Environment Variables

In general OMNeT++ requires that certain environment variables are set. Always use the the
provided shell window to start the IDE or your simulations.

2.7 Reconfiguring the Libraries

If you need to recompile the OMNeT++ components with different flags (e.g. different opti-
mization), then change the top-level OMNeT++ directory, edit configure.user accordingly,
then type:

$./configure
$ make clean
$ make

If you want to recompile just a single library, then change to the directory of the library (e.g.
cd src/sim) and type:

4 Chapter 2. Windows - Using the MinGW64 Compiler Toolchain

Installation Guide, Release 6.0.3

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

Note: The built libraries and programs are immediately copied to the lib/ and bin/ subdirs.

2.8 Portability Issues

OMNeT++ has been tested with both the gcc and the clang compiler from the MinGW-w64
package.

Microsoft Visual C++ is not supported in the Academic Edition.

2.9 Additional Packages

2.9.1 MPI

MPI is only needed if you would like to run parallel simulations.

There are several MPI implementations for Windows, and OMNeT++ does not mandate any
specific one. We recommend DeinoMPI, which can be downloaded from http://mpi.deino.net.

After installing DeinoMPI, adjust the MPI_DIR setting in OMNeT++’s configure.user, and
reconfigure and recompile OMNeT++:

$./configure
$ make cleanall
$ make

Note: In general, if you would like to run parallel simulations, we recommend that you use
Linux, macOS, or another unix-like platform.

2.8. Portability Issues 5

http://mpi.deino.net

Installation Guide, Release 6.0.3

2.9.2 Akaroa

Akaroa 2.7.9, which is the latest version at the time of writing, does not support Windows.
You may try to port it using the porting guide from the Akaroa distribution.

6 Chapter 2. Windows - Using the MinGW64 Compiler Toolchain

CHAPTER

THREE

WINDOWS - USING WINDOWS SUBSYSTEM FOR LINUX (WSL)
VERSION 2

WSL 2 supports running a full Linux distribution on a Windows machine. Running OMNeT++
in WSL 2 has certain advantages and disadvantages compared to running OMNeT++ natively
on Windows:

Advantages:

• You will probably see significant speedup on certain tasks (like compilation) compared
to the native Windows (MinGW64) toolchain, because the compiler toolchain and the
filesystem (ext4) is much faster in WSL 2 than their Windows equivalents.

• The native MinGW64 toolchain on Windows is basically a mini (Unix-like) system, em-
ulated on top of Windows. Because of the emulation, it may have incompatibilities and
limitations compared to the Linux tools. You will have fewer issues and surprises when
running OMNeT++ on Linux.

Disadvantages:

• WSL 2 does not (yet) support running Linux GUI applications. This means that you
must install and run an X Server process on Windows to be able to use any GUI tools
(i.e. IDE, Qtenv, etc.) from OMNeT++.

• Because of a limitation of the available X Server software, 3D acceleration is not working.
You will not be able to use the OMNeT++ OpenSceneGraph and osgEarth integration in
this setup and it is recommended to explicitly disable these features when you build
OMNeT++.

3.1 WSL 2 Requirements

Installing OMNeT++ on WSL 2 is supported on Windows 10 version 1903 (build 18362.1049)
or later. Note especially the minor build number. Your Windows version must have at least
1049 as a minor build number.

3.2 Enabling WSL 2 on Windows

Open a PowerShell with Administrator privileges. On newer versions of Windows, you can
install the WSL subsystem by typing:

wsl --install

Alternatively, if your system does not have a wsl command, use the following commands:

7

Installation Guide, Release 6.0.3

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-
→˓Linux /all /norestart
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /

→˓norestart

After a successful installation, reboot your computer and open an Administrator PowerShell
again to set the default WSL version to 2.

wsl.exe --set-default-version 2

Tip: We recommend installing and using the Windows Terminal application, which is avail-
able at https://www.microsoft.com/store/productId/9N0DX20HK701

3.3 Installing an Ubuntu distribution

As a next step, you must install a Linux distribution from the Microsoft Store. We recommend
using Ubuntu 20.04 from https://www.microsoft.com/store/productId/9n6svws3rx71.

Once the installation is done, run the distro and finish the setup process by setting up a user
name and password. At this point, you could install OMNeT++, but GUI programs would not
work.

3.4 Install VcXserver

Note: There is ongoing work (called WSLg https://github.com/microsoft/wslg) to make
Linux GUI applications work on Windows by default. On later versions of Windows (21H2+)
you may be able to skip the whole X Server installation step.

To use GUI programs from Linux, you must install an X Server application from: https:
//sourceforge.net/projects/vcxsrv/

Start the installation and make sure that you:

• select “Disable access control”

• set display number to 0

• check “Private networks, such as my home or work network” and click “Allow access”
when the Windows Defender Firewall asks for permission.

Open the Windows Terminal and launch the Ubuntu distribution from the dropdown menu.
Add the following line to the /etc/bash.bashrc or ~/.bashrc file.

export DISPLAY=$(grep -m 1 nameserver /etc/resolv.conf | awk '{print $2}
→˓'):0.0

This will ensure that Linux programs will always find the X Server process running on Win-
dows. Exit from the Ubuntu shell, and restart it to make sure that the change was applied
correctly. Check if

$ echo $DISPLAY

displays the correct IP address of the Windows machine.

8 Chapter 3. Windows - Using Windows Subsystem for Linux (WSL) version 2

https://www.microsoft.com/store/productId/9N0DX20HK701
https://www.microsoft.com/store/productId/9n6svws3rx71
https://github.com/microsoft/wslg
https://sourceforge.net/projects/vcxsrv/
https://sourceforge.net/projects/vcxsrv/

Installation Guide, Release 6.0.3

In the future, make sure that the X Server is always running when you want to run Linux
GUI programs by either making the X Server automatically start or launching it manually.

3.5 Install OMNeT++ Linux

At this point, you have a fully functional Linux environment that can run GUI apps. You can
go on and follow the Ubuntu specific installation steps to finally install OMNeT++ on your
system.

3.5. Install OMNeT++ Linux 9

Installation Guide, Release 6.0.3

10 Chapter 3. Windows - Using Windows Subsystem for Linux (WSL) version 2

CHAPTER

FOUR

MACOS

4.1 Supported Releases

This chapter provides additional information for installing OMNeT++ on macOS.

The following releases are covered:

• macOS 11.x

4.2 Installing the Prerequisite Packages

Install the command line developer tools for macOS (compiler, debugger, etc.)

$ xcode-select --install

Installing additional packages will enable more functionality in OMNeT++; see the Additional
packages section at the end of this chapter.

4.3 Enabling Development Mode in Terminal

MacOS has a strict default security policy preventing the execution of unsigned code. This
behavior often interferes with the development process so you must explicitly allow running
unsigned code from a Terminal. On the System Preferences / Security and Privacy / Privacy
tab, select Development Tools on the left side, unlock the panel with the lock icon on the
bottom left and select the Terminal app on the right side to override the default security
policy for the Terminal app.

11

Installation Guide, Release 6.0.3

Fig. 4.1: Enable Running Unsigned Code in Terminal

Note: If you do not see the Terminal item in the Development Tools section, you should exe-
cute spctl developer-mode enable-terminal in the terminal and then restart System Preferences
applet.

4.4 Debugging Unsigned Code

Even if you have enabled development mode in the terminal, missing code signatures will
still cause problems during debugging, because the debugged process is started by the IDE,
not the terminal. To be able to debug, you must disable code signature checking globally by
typing:

$ sudo spctl --master-disable

or since Mac OS 10.15.7 (Catalina)

$ sudo spctl --global-disable

After issuing the above command go to System Preferences / Security and Privacy / General
and select Any at the bottom of the dialog. After restarting your terminal application, you will
be able to debug your unsigned simulation models.

12 Chapter 4. macOS

Installation Guide, Release 6.0.3

4.5 Running OMNeT++ on Apple Silicon

OMNeT++ does not currently support the Apple M1 processor natively, but you can run the
x86_64 version using the Rosetta 2 emulator. To run OMNeT++ under emulation, open a
terminal window, then execute:

$ arch -x86_64 /bin/zsh --login

After this, follow the normal installation instructions and be sure to execute all commands in
this terminal.

Note: The above command may graphically prompt you to allow the installation of the
emulator component. You can also manually trigger the installation from the command line
using the following command: softwareupdate –install-rosetta –agree-to-license.

Note: Typing source setenv will launch the x86_64 emulator automatically for you. Make
sure to execute all commands from that terminal.

4.6 Additional Steps Required on macOS to Use the Debugger

The Command Line Developer Tools package contains the lldb debugger. OMNeT++ 6.0
and later contains the necessary driver binary (lldbmi2) that allows lldb to be used in
the OMNeT++ IDE. If you are upgrading from an earlier version of OMNeT++, be sure to
delete and recreate all Launch Configurations in the IDE. This is required because older
Launch Configurations were using gdb as the debugger, but the new IDE uses lldbmi2 as
the debugger executable.

On the first debug session the OS may prompt you to allow debugging with the lldb exe-
cutable.

4.7 Downloading and Unpacking OMNeT++

Download OMNeT++ from https://omnetpp.org. Make sure you select to download the ma-
cOS specific archive, omnetpp-6.0.3-macos-x86_64.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /Users/<you>. Open a terminal, and extract the archive using the following com-
mand:

$ tar zxvf omnetpp-6.0.3-macos-x86_64.tgz

A subdirectory called omnetpp-6.0.3 will be created, containing the simulator files.

Alternatively, you can also unpack the archive using Finder.

Note: The Terminal can be found in the Applications / Utilities folder.

4.5. Running OMNeT++ on Apple Silicon 13

https://omnetpp.org

Installation Guide, Release 6.0.3

4.8 Environment Variables

In general OMNeT++ requires that certain environment variables are set and the omnetpp-6.
0.3/bin directory is in the PATH. Source the setenv script to set up all these variables.

$ cd omnetpp-6.0.3
$ source setenv

To set the environment variables permanently, edit .profile, .zprofile or .zshenv in your
home directory and add a line something like this:

[-f "$HOME/omnetpp-6.0.3/setenv"] && source "$HOME/omnetpp-6.0.3/setenv"

4.9 Configuring and Building OMNeT++

Check configure.user to make sure it contains the settings you need. In most cases you
don’t need to change anything in it.

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system. It writes
the results into the Makefile.inc file, which will be read by the makefiles during the build
process.

Note: If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (You may need to increase the scrollback buffer size
of the terminal and re-run ./configure.) The script also writes a very detailed log of its
operation into config.log to help track down errors. Since config.log is very long, it is
recommended that you open it in an editor and search for phrases like error or the name of
the package associated with the problem.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

$ make

Tip: To take advantage of multiple processor cores, add the -j4 option to the make command
line.

Note: The build process will not write anything outside its directory, so no special privileges
are needed.

Tip: The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one set of
the libraries, specify MODE=debug or MODE=release:

14 Chapter 4. macOS

Installation Guide, Release 6.0.3

4.10 Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the aloha simu-
lation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

4.11 Starting the IDE

OMNeT++ comes with an Eclipse-based simulation IDE.

Start the IDE by typing:

$ omnetpp

If you would like to be able to launch the IDE via Applications, the Dock or a desktop shortcut,
do the following: open the omnetpp-6.0.3 folder in Finder, go into the ide subfolder, create
an alias for the omnetpp program there (right-click, Make Alias), and drag the new alias into
the Applications folder, onto the Dock, or onto the desktop.

Alternatively, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

which will do roughly the same.

4.12 Using the IDE

When you try to build a project in the IDE, you may get the following warning message:

Toolchain “. . . ” is not supported on this platform or installation. Please go to the
Project menu, and activate a different build configuration. (You may need to switch
to the C/C++ perspective first, so that the required menu items appear in the
Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool Chain Editor
> Current toolchain > GCC for OMNeT++.

The IDE is documented in detail in the User Guide.

4.13 Reconfiguring the Libraries

If you need to recompile the OMNeT++ components with different flags (e.g. different opti-
mization), then change the top-level OMNeT++ directory, edit configure.user accordingly,
then type:

$./configure
$ make clean
$ make

4.10. Verifying the Installation 15

Installation Guide, Release 6.0.3

Tip: To take advantage of multiple processor cores, add the -j4 option to the make command
line.

If you want to recompile just a single library, then change to the directory of the library (e.g.
cd src/sim) and type:

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

Note: The built libraries and programs are immediately copied to the lib/ and bin/ subdi-
rectories.

4.14 Additional Packages

4.14.1 OpenMPI

MacOS does not come with OpenMPI, so you must install it manually. You can install it
from the Homebrew repo (http://brew.sh) by typing brew install open-mpi. In this case,
you have to manually set the MPI_CFLAGS and MPI_LIBS variables in configure.user and
re-run ./configure.

4.14.2 Akaroa

Akaroa 2.7.9, which is the latest version at the time of writing, does not support macOS. You
may try to port it using the porting guide from the Akaroa distribution.

16 Chapter 4. macOS

http://brew.sh

CHAPTER

FIVE

LINUX

5.1 Supported Linux Distributions

This chapter provides instructions for installing OMNeT++ on selected Linux distributions:

• Ubuntu 20.04 and 22.4 LTS

• Fedora Workstation 31

• Red Hat Enterprise Linux Desktop Workstation 8.x

• OpenSUSE Leap 15.3

This chapter describes the overall process. Distro-specific information, such as how to install
the prerequisite packages, are covered by distro-specific chapters.

Note: If your Linux distribution is not listed above, you still may be able to use some
distro-specific instructions in this Guide.

Ubuntu derivatives (Ubuntu instructions may apply):

• Kubuntu, Xubuntu, Edubuntu, . . .

• Linux Mint

Some Debian-based distros (Ubuntu instructions may apply, as Ubuntu itself is based on
Debian):

• Knoppix and derivatives

• Mepis

Some Fedora-based distros (Fedora instructions may apply):

• Simplis

• Eeedora

5.2 Installing the Prerequisite Packages

OMNeT++ requires several packages to be installed on the computer. These packages include
the C++ compiler (gcc or clang) and several other libraries and programs. These packages can
be installed from the software repositories of your Linux distribution.

See the chapter specific to your Linux distribution for instructions on installing the
packages needed by OMNeT++.

Generally, you will need superuser permissions to install packages.

17

Installation Guide, Release 6.0.3

Not all packages are available from software repositories; some (optional) ones need to be
downloaded separately from their web sites, and installed manually. See the section Addi-
tional Packages later in this chapter.

5.3 Downloading and Unpacking

Download OMNeT++ from https://omnetpp.org. Make sure you select to download the Linux
specific archive, omnetpp-6.0.3-linux-x86_64.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /home/<you>. Open a terminal, and extract the archive using the following com-
mand:

$ tar xvfz omnetpp-6.0.3-linux-x86_64.tgz

This will create an omnetpp-6.0.3 subdirectory with the OMNeT++ files in it.

Note: On how to open a terminal on your Linux installation, see the chapter specific to your
Linux distribution.

5.4 Environment Variables

In general OMNeT++ requires that certain environment variables are set and the omnetpp-
6.0.3/bin directory is in the PATH. Source the setenv script to set up all these variables.

$ cd omnetpp-6.0.3
$ source setenv

To set the environment variables permanently, edit .profile or .zprofile in your home
directory and add a line something like this:

[-f "$HOME/omnetpp-6.0.3/setenv"] && source "$HOME/omnetpp-6.0.3/setenv"

Note: If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

Note: If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

Note that all Linux distributions covered in this Installation Guide use bash unless the user
has explicitly selected another shell.

18 Chapter 5. Linux

https://omnetpp.org

Installation Guide, Release 6.0.3

5.5 Configuring and Building OMNeT++

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system. It writes
the results into the Makefile.inc file, which will be read by the makefiles during the build
process.

Fig. 5.1: Configuring OMNeT++

Note: If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (Use Shift+PgUp; you may need to increase the scroll-
back buffer size of the terminal and re-run ./configure.) The script also writes a very
detailed log of its operation into config.log to help track down errors. Since config.log is
very long, it is recommended that you open it in an editor and search for phrases like error
or the name of the package associated with the problem.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

$ make

5.5. Configuring and Building OMNeT++ 19

Installation Guide, Release 6.0.3

Fig. 5.2: Building OMNeT++

Tip: To take advantage of multiple processor cores, add the -j8 option to the make command
line.

Note: The build process will not write anything outside its directory, so no special privileges
are needed.

Tip: The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one set of
the libraries, specify MODE=debug or MODE=release:

5.6 Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the aloha simu-
lation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

20 Chapter 5. Linux

Installation Guide, Release 6.0.3

5.7 Starting the IDE

You can launch the OMNeT++ Simulation IDE by typing the following command in the termi-
nal:

$ omnetpp

Fig. 5.3: The Simulation IDE

If you would like to be able to access the IDE from the application launcher or via a desktop
shortcut, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

Or add a shortcut that points to the omnetpp program in the ide subdirectory by other
means, for example using the Linux desktop’s context menu.

5.8 Using the IDE

When you try to build a project in the IDE, you may get the following warning message:

Toolchain “. . . ” is not supported on this platform or installation. Please go to the
Project menu, and activate a different build configuration. (You may need to switch
to the C/C++ perspective first, so that the required menu items appear in the
Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool Chain Editor
> Current toolchain > GCC for OMNeT++.

The IDE is documented in detail in the User Guide.

5.7. Starting the IDE 21

Installation Guide, Release 6.0.3

5.9 Reconfiguring the Libraries

If you need to recompile the OMNeT++ components with different flags (e.g. different opti-
mization), then change the top-level OMNeT++ directory, edit configure.user accordingly,
then type:

$./configure
$ make cleanall
$ make

If you want to recompile just a single library, then change to the directory of the library (e.g.
cd src/sim) and type:

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

Note: For detailed description of all options please read the Build Options chapter.

5.10 Additional Packages

Note that at this point, MPI, Doxygen and GraphViz have been installed as part of the prereq-
uisites.

5.10.1 Qtenv

OMNeT++ comes with a Qt based runtime environment that supports also 3D visualization.
The new environment can be disabled by the WITH_QTENV=no variable in the configure.user
file and then running ./configure.

5.10.2 Akaroa

Linux distributions do not contain the Akaroa package. It must be downloaded, compiled and
installed manually before installing OMNeT++.

Note: As of version 2.7.9, Akaroa only supports Linux and Solaris.

Download Akaroa 2.7.9 from: http://www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/download.chtml

Extract it into a temporary directory:

22 Chapter 5. Linux

http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml

Installation Guide, Release 6.0.3

$ tar xfz akaroa-2.7.9.tar.gz

Configure, build and install the Akaroa library. By default, it will be installed into the /usr/
local/akaroa directory.

$./configure
$ make
$ sudo make install

Go to the OMNeT++ directory, and (re-)run the configure script. Akaroa will be automatically
detected if you installed it to the default location.

5.10.3 Nemiver

Nemiver is the default debugger for the OMNeT++ just-in-time debugging facility (see the
debugger-attach-on-startup and debugger-attach-on-error configuration options).
Nemiver can be installed via the package manager in most Linux distros. For example, on
Ubuntu and other Debian-based distros you can install it by the following command:

$ sudo apt-get install nemiver

5.10. Additional Packages 23

Installation Guide, Release 6.0.3

24 Chapter 5. Linux

CHAPTER

SIX

UBUNTU

6.1 Supported Releases

This chapter provides additional information for installing OMNeT++ on Ubuntu Linux instal-
lations. The overall installation procedure is described in the Linux chapter.

The following Ubuntu releases are covered:

• Ubuntu 20.04 LTS or 22.04 LTS

They were tested on the following architectures:

• Intel/AMD 64-bit

The instructions below assume that you use the default desktop and the bash shell. If you use
another desktop environment or shell, you may need to adjust the instructions accordingly.

6.2 Opening a Terminal

Type terminal in your program launcher and click on the Terminal icon.

6.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

6.3.1 Command-Line Installation

Before starting the installation, refresh the database of available packages. Type in the ter-
minal:

$ sudo apt-get update

To install the required packages, type in the terminal:

$ sudo apt-get install build-essential clang lld gdb bison flex perl \
python3 python3-pip qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools \
libqt5opengl5-dev libxml2-dev zlib1g-dev doxygen graphviz \
libwebkit2gtk-4.0-37 xdg-utils

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy \
seaborn posix_ipc

25

Installation Guide, Release 6.0.3

To use Qtenv with 3D visualization support, install the development packages for Open-
SceneGraph (3.4 or later) and the osgEarth (2.9 or later) packages. (You may need to enable
the Universe software repository in Software Sources. and also enable WITH_OSGEARTH in
configure.user.)

$ sudo apt-get install openscenegraph-plugin-osgearth libosgearth-dev

Warning: Ubuntu 22.04 no longer provides the libosgearth package so osgEarth must be
installed from sources. OpenSceneGraph can still be installed using sudo apt-get install
libopenscenegraph-dev.

Warning: The IDE requires GLIBC 2.28 version or later, so you Ubuntu 18.04 is NOT
supported because it comes with GLIBC 2.27.

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

To enable the optional parallel simulation support you will need to install the MPI packages:

$ sudo apt-get install mpi-default-dev

At the confirmation questions (Do you want to continue? [Y/N]), answer Y.

Fig. 6.1: Command-Line Package Installation

26 Chapter 6. Ubuntu

Installation Guide, Release 6.0.3

6.3.2 Graphical Installation

Open the dash and type Synaptic.

Since software installation requires root permissions, Synaptic will ask you to type your
password.

Search for the following packages in the list, click the squares before the names, then choose
Mark for installation or Mark for upgrade.

If the Mark additional required changes? dialog comes up, choose the Mark button.

The packages:

• required: build-essential, gcc, g++, bison, flex, perl, qtbase5-dev, qtchooser, qt5-qmake,
qtbase5-dev-tools, python3, doxygen, graphviz, libwebkit2gtk-4.0-37, xdg-utils

• recommended: libopenscenegraph-dev, openscenegraph-plugin-osgearth, libosgearth-
dev, mpi-default-dev, libxml2-dev, zlib1g-dev

Fig. 6.2: Synaptic Package Manager

Click Apply, then in the Apply the following changes? window, click Apply again. In the
Changes applied window, click Close.

After this, you still have to install some required Python packages from command line:

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy \
seaborn posix_ipc

6.3. Installing the Prerequisite Packages 27

Installation Guide, Release 6.0.3

6.3.3 Post-Installation Steps

Setting Up Debugging

By default, Ubuntu does not allow ptracing of non-child processes by non-root users.
That is, if you want to be able to debug simulation processes by attaching to them
with a debugger, or similar, you want to be able to use OMNeT++ just-in-time debugging
(debugger-attach-on-startup and debugger-attach-on-error configuration options),
you need to explicitly enable them.

To temporarily allow ptracing non-child processes, enter the following command:

$ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

To permanently allow it, edit /etc/sysctl.d/10-ptrace.conf and change the line:

kernel.yama.ptrace_scope = 1

to read

kernel.yama.ptrace_scope = 0

28 Chapter 6. Ubuntu

CHAPTER

SEVEN

FEDORA 33

7.1 Supported Releases

This chapter provides additional information for installing OMNeT++ on Fedora installations.
The overall installation procedure is described in the Linux chapter.

The following Fedora release is covered:

• Fedora 33

It was tested on the following architectures:

• Intel 64-bit

7.2 Opening a Terminal

Open the Search bar, and type Terminal.

7.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

7.3.1 Command-Line Installation

To install the required packages, type in the terminal:

$ sudo dnf install make gcc gcc-c++ clang lld bison flex perl \
python3 python3-pip qt5-devel libxml2-devel \
zlib-devel doxygen graphviz webkitgtk

$ python3 -m pip install --user --upgrade numpy pandas \
matplotlib scipy seaborn posix_ipc

To use 3D visualization support in Qtenv, you should install OpenSceneGraph 3.2 or later
and osgEarth 2.7 or later (recommended):

$ sudo dnf install OpenSceneGraph-devel osgearth-devel

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

29

Installation Guide, Release 6.0.3

To enable the optional parallel simulation support you will need to install the MPI package:

$ sudo dnf install openmpi-devel

Note that openmpi will not be available by default, it needs to be activated in every session
with the

$ module load mpi/openmpi-x86_64

command. When in doubt, use module avail to display the list of available modules. If you
need MPI in every session, you may add the module load command to your startup script
(.bashrc).

7.3.2 Graphical Installation

The graphical package manager can be launched by opening the Search bar and typing dnf.

Search for the following packages in the list. Select the checkboxes in front of the names, and
pick the latest version of each package.

The packages:

• make, bison, gcc, gcc-c++, clang, lld, flex, perl, python3, python3-pip, qt5-
devel, libxml2-devel, zlib-devel, webkitgtk, doxygen, graphviz, openmpi-devel,
OpenSceneGraph-devel, osgearth-devel

Click Apply, then follow the instructions.

Open a terminal and enter the following command to install the required Python packages:

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy \
seaborn posix_ipc

30 Chapter 7. Fedora 33

CHAPTER

EIGHT

RED HAT

8.1 Supported Releases

This chapter provides additional information for installing OMNeT++ on Red Hat Enterprise
Linux installations. The overall installation procedure is described in the Linux chapter.

The following Red Hat release is covered:

• Red Hat Enterprise Linux Desktop Workstation 8.x

It was tested on the following architectures:

• Intel 64-bit

8.2 Opening a Terminal

Choose Applications > Accessories > Terminal from the menu.

8.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

Note: You will need Red Hat Enterprise Linux Desktop Workstation for OMNeT++. The
Desktop Client version does not contain development tools.

8.3.1 Command-Line Installation

To install the required packages, type in the terminal:

$ su -c 'yum install make gcc gcc-c++ clang lld bison flex perl \
python3 python3-pip qt-devel libxml2-devel zlib-devel doxygen \
graphviz xdg-utils'

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy \
seaborn posix_ipc

To use 3D visualization support in Qtenv (recommended), you should install the
OpenSceneGraph-devel (3.2 or later) and osgEarth-devel (2.7 or later) packages. These pack-
ages are not available from the official RedHat repository so you may need to get them from
different sources (e.g. rpmfind.net).

31

Installation Guide, Release 6.0.3

Warning: The IDE requires GLIBC 2.28 version or later, so RedHat 6 and 7 is NOT
supported.

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

To install additional (optional) packages for parallel simulation, type:

$ su -c 'yum install openmpi-devel'

Note that openmpi will not be available by default, it needs to be activated in every session
with the

$ module load openmpi_<arch>

command, where <arch> is your architecture (usually i386 or x86_64). When in doubt, use
module avail to display the list of available modules. If you need MPI in every session, you
may add the module load command to your startup script (.bashrc).`

8.3.2 Graphical Installation

The graphical installer can be launched by choosing Applications > Add/Remove Software
from the menu.

Search for the following packages in the list. Select the checkboxes in front of the names, and
pick the latest version of each package.

The packages:

• make, gcc, gcc-c++, clang, lld, bison, flex, perl, python3, qt-devel, libxml2-devel, zlib-
devel, doxygen, graphviz, openmpi-devel, xdg-utils

Click Apply, then follow the instructions.

8.4 SELinux

You may need to turn off SELinux when running certain simulations. To do so, click on Sys-
tem > Administration > Security Level > Firewall, go to the SELinux tab, and choose Disabled.

You can verify the SELinux status by typing the sestatus command in a terminal.

Note: From OMNeT++ 4.1 on, makefiles that build shared libraries include the chcon -t
textrel_shlib_t lib<name>.so command that properly sets the security context for the
library. This should prevent the SELinux-related “cannot restore segment prot after reloc:
Permission denied” error from occurring, unless you have a shared library which was built
using an obsolete or hand-crafted makefile that does not contain the chcon command.

32 Chapter 8. Red Hat

CHAPTER

NINE

OPENSUSE

9.1 Supported Releases

This chapter provides additional information for installing OMNeT++ on openSUSE installa-
tions. The overall installation procedure is described in the Linux chapter.

The following openSUSE release is covered:

• openSUSE Leap 15.3

It was tested on the following architectures:

• Intel 64-bit

9.2 Opening a Terminal

Open the Search bar, and type Terminal.

9.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

9.3.1 Command-Line Installation

To install the required packages, type in the terminal:

$ sudo zypper install make gcc gcc-c++ clang lld bison flex perl \
python3 python3-pip libqt5-qtbase-devel libxml2-devel zlib-devel \
doxygen graphviz xdg-utils

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy \
seaborn posix_ipc

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

To use 3D visualization support in Qtenv (recommended), you should install the
OpenSceneGraph-devel (3.2 or later) and osgEarth-devel (2.7 or later) packages. These pack-
ages are not available from the official RedHat repository so you may need to get them from
different sources (e.g. rpmfind.net).

33

Installation Guide, Release 6.0.3

To enable the optional parallel simulation support you will need to install the MPI package:

$ sudo zypper install openmpi-devel

Note that openmpi will not be available by default, first you need to log out and log in again,
or source your .profile script:

$. ~/.profile

9.3.2 Graphical Installation

The graphical installer can be launched by opening the Search bar and typing Software Man-
agement.

Fig. 9.1: Yast Software Management

Search for the following packages in the list. Select the checkboxes in front of the names, and
pick the latest version of each package.

The packages:

• make, gcc, gcc-c++, clang, lld, bison, flex, perl, libqt5-qtbase-devel, libxml2-devel, zlib-
devel, xdg-utils, doxygen, graphviz, openmpi-devel

Click Accept, then follow the instructions.

34 Chapter 9. OpenSUSE

CHAPTER

TEN

GENERIC UNIX

10.1 Introduction

This chapter provides additional information for installing OMNeT++ on Unix-like operating
systems not specifically covered by this Installation Guide. The list includes FreeBSD, Solaris,
and Linux distributions not covered in other chapters.

Note: In addition to Windows and macOS, the Simulation IDE will only work on Linux
x86/arm 64-bit platforms. Other operating systems (FreeBSD, Solaris, etc.) and architec-
tures may still be used as simulation platforms, without the IDE.

10.2 Dependencies

The following packages are required for OMNeT++ to work:

build-essential, GNU make, gcc, g++, bison (3.0+), flex, perl, python3, xdg-utils
These packages are needed for compiling OMNeT++ and simulation models, and also for
certain OMNeT++ tools to work.

It is also recommended to install the clang and lld package as they provide faster compilation
and linking.

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. If you do not need the 3D visualization capabilities, you can disable them in the
configure.user file, too.

Warning: The IDE requires GLIBC 2.28 version or later, so you will need at least Debian
10, RedHat 8 or Ubuntu 18.10 to run the IDE.

The following packages are strongly recommended, because their absence results in severe
feature loss:

Qt 5.9 or later
Required by the Qtenv simulation runtime environment. You need the devel packages
that include header files as well.

OpenSceneGraph (3.4+) and osgEarth (2.9+)
These packages will enable 3D visualization in Qtenv. You need the devel packages that
include header files as well.

35

Installation Guide, Release 6.0.3

The following packages are required if you want to take advantage of some advanced OM-
NeT++ features:

LibXML2
LibXML2 is needed for OMNeT++ to be able to DTD validate an XML file. The devel
packages (that include the header files) are needed.

GraphViz, Doxygen
These packages are used by the NED documentation generation feature of the IDE.
When they are missing, documentation will have less content.

MPI
openmpi or some other MPI implementation is required to support parallel simulation
execution.

Akaroa
Implements Multiple Replications In Parallel (MRIP). Akaroa can be downloaded from
the project’s website.

The exact names of these packages may differ across distributions.

10.3 Determining Package Names

If you have a distro unrelated to the ones covered in this Installation Guide, you need to
figure out what is the established way of installing packages on your system, and what are
the names of the packages you need.

10.3.1 Qt

If your platform does not have suitable Qt packages, you may still use OMNeT++ to run
simulations from the command line. To disable the Qtenv runtime environment, use:

$./configure WITH_QTENV=no

This will prevent the build system to link with Qt libraries. It is also recommended if you are
installing OMNeT++ from a remote terminal session.

10.3.2 MPI

OMNeT++ is not sensitive to the particular MPI implementation. You may use OpenMPI, or
any other standards-compliant MPI package.

10.4 Downloading and Unpacking

Download OMNeT++ from https://omnetpp.org. Make sure you select to download the
generic archive, omnetpp-6.0.3-core.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /home/<you>. Open a terminal, and extract the archive using the following com-
mand:

$ tar xvfz omnetpp-6.0.3-core.tgz

This will create an omnetpp-6.0.3 subdirectory with the OMNeT++ files in it.

36 Chapter 10. Generic Unix

https://omnetpp.org

Installation Guide, Release 6.0.3

10.5 Environment Variables

In general OMNeT++ requires that certain environment variables are set and the omnetpp-6.
0.3/bin directory is in the PATH. Source the setenv script to set up all these variables.

$ cd omnetpp-6.0.3
$ source setenv

To set the environment variables permanently, edit .profile or .zprofile in your home
directory and add a line something like this:

[-f "$HOME/omnetpp-6.0.3/setenv"] && source "$HOME/omnetpp-6.0.3/setenv"

Note: If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

10.6 Configuring and Building OMNeT++

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system. It writes
the results into the Makefile.inc file, which will be read by the makefiles during the build
process.

Fig. 10.1: Configuring OMNeT++

Note: If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (Use Shift+PgUp; you may need to increase the scroll-
back buffer size of the terminal and re-run ./configure.) The script also writes a very
detailed log of its operation into config.log to help track down errors. Since config.log is

10.5. Environment Variables 37

Installation Guide, Release 6.0.3

very long, it is recommended that you open it in an editor and search for phrases like error
or the name of the package associated with the problem.

The configure script tries to build and run small test programs that are using specific
libraries or features of the system. You can check the config.log file to see which test
program has failed and why. In most cases the problem is that the script cannot figure
out the location of a specific library. Specifying the include file or library location in the
configure.user file and then re-running the configure script usually solves the problem.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

$ make

Fig. 10.2: Building OMNeT++

Tip: To take advantage of multiple processor cores, add the -j8 option (for 8 cores) to the
make command line.

Note: The build process will not write anything outside its directory, so no special privileges
are needed.

Tip: The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one set of
the libraries, specify MODE=debug or MODE=release:

38 Chapter 10. Generic Unix

Installation Guide, Release 6.0.3

10.7 Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the aloha simu-
lation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

10.8 Starting the IDE

Note: The IDE is supported only on 64-bit versions of Windows, macOS and Linux.

You can run the IDE by typing the following command in the terminal:

$ omnetpp

Fig. 10.3: The Simulation IDE

If you would like to be able to access the IDE from the application launcher or via a desktop
shortcut, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

Note: The above commands assume that your system has the xdg commands, which most
modern distributions do.

10.7. Verifying the Installation 39

Installation Guide, Release 6.0.3

10.9 Optional Packages

10.9.1 Akaroa

If you wish to use Akaroa, it must be downloaded, compiled, and installed manually before
installing OMNeT++.

Note: As of version 2.7.9, Akaroa only supports Linux and Solaris.

Download Akaroa 2.7.9 from: http://www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/download.chtml

Extract it into a temporary directory:

$ tar xfz akaroa-2.7.9.tar.gz

Configure, build and install the Akaroa library. By default, it will be installed into the /usr/
local/akaroa directory.

$./configure
$ make
$ sudo make install

Go to the OMNeT++ directory, and (re-)run the configure script. Akaroa will be automatically
detected if you installed it to the default location.

40 Chapter 10. Generic Unix

http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml

CHAPTER

ELEVEN

BUILD OPTIONS

11.1 Configure.user Options

The configure.user file contains several options that can be used to fine-tune the simula-
tion libraries.

You always need to re-run the configure script in the installation root after changing the
configure.user file.

$./configure

After this step, you have to remove all previous libraries and recompile OMNeT++:

$ make cleanall
$ make

Options:

PREFER_CLANG=no
If both gcc and clang are installed on your system, setting this variable to no will force
the configure script to use gcc as C++ compiler.

<COMPONENTNAME>_CFLAGS, <COMPONENTNAME>_LIBS
The configure.user file contains variables for defining the compile and link options
needed by various external libraries. By default, the configure command detects these
automatically, but you may override the auto detection by specifying the values by hand.
(e.g. <COMP>_CFLAGS=-I/path/to/comp/includedir and <COMP>_LIBS=-L/path/to/
comp/libdir -lnameoflib.)

WITH_PARSIM=no
Use this variable to explicitly disable parallel simulation support in OMNeT++.

WITH_NETBUILDER=no
This option allows you to leave out the NED language parser and the network builder.
(This is needed only if you are building your network with C++ API calls and you do not
use the built-in NED language parser at all.)

WITH_QTENV=no
This will prevent the build system to link with the Qt libraries. Use this option if your
platform does not have a suitable Qt package or you will run the simulation only in
command line mode. (i.e. You want to run OMNeT++ in a remote terminal session.)

WITH_OSG=no
This will prevent the build system to use OpenScreenGraph which is used for 3D visu-
alization in Qtenv.

WITH_OSGEARTH=no
This will prevent the build system to use osgEarth which is used for 2D/3D mapping
and visualization in Qtenv.

41

Installation Guide, Release 6.0.3

CFLAGS_[RELEASE/DEBUG]
To change the compiler command line options the build process is using, you should
specify them in the CFLAGS_RELEASE and CFLAGS_DEBUG variables. By default, the flags
required for debugging or optimization are detected automatically by the configure
script. If you set them manually, you should specify all options you need. It is rec-
ommended to check what options are detected automatically (check the Makefile.inc
after running configure and look for the CFLAGS_[RELEASE/DEBUG] variables.) and
add/modify those options manually in the configure.user file.

LDFLAGS
Linker command line options can be explicitly set using this variable. It is recommended
to check what options are detected automatically (check the Makefile.inc after run-
ning configure and look for the LDFLAGS variable.) and add/modify those options
manually in the configure.user file.

SHARED_LIBS
This variable controls whether the OMNeT++ build process will create static or dynamic
libraries. By default, the OMNeT++ runtime is built as a set of shared libraries. If
you want to build a single executable from your simulation, specify SHARED_LIBS=no in
configure.user to create static OMNeT++ libraries and then reconfigure (./configure)
and recompile OMNeT++ (make cleanall; make). Once the OMNeT++ static libraries
are correctly built, your own project have to be rebuilt, too. You will get a single, stati-
cally linked executable, which requires only the NED and INI files to run.

Warning: It is important to completely delete the OMNeT++ libraries (make cleanall)
and then rebuild them, otherwise it cannot be guaranteed that the created simulations
are linked against the correct libraries.

Note: The USE_DOUBLE_SIMTIME and WITHOUT_CPACKET options are no longer supported.
They were introduced in OMNeT++ 4.0 to help porting model code from OMNeT++ 3.x, and
having fulfilled their role, they were removed in OMNeT++ 5.0. If you still have old model code
to port, use OMNeT++ 4.x.

11.2 Moving the Installation

When you build OMNeT++ on your machine, several directory names are compiled into the
binaries. This makes it easier to set up OMNeT++ in the first place, but if you rename the
installation directory or move it to another location in the file system, the built-in paths
become invalid and the correct paths have to be supplied via environment variables.

The following environment variables are affected (in addition to PATH, which also needs to be
adjusted):

OMNETPP_IMAGE_PATH
This variable contains the list of directories where Qtenv looks for icons. Set it to point
to the images/ subdirectory of your OMNeT++ installation.

LD_LIBRARY_PATH
This variable contains the list of additional directories where shared libraries are looked
for. Initially, LD_LIBRARY_PATH is not needed because shared libraries are located via
the rpath mechanism. When you move the installation, you need to add the lib/ sub-
directory of your OMNeT++ installation to LD_LIBRARY_PATH.

Note: On macOS, DYLD_LIBRARY_PATH is used instead of LD_LIBRARY_PATH. On Windows,

42 Chapter 11. Build Options

Installation Guide, Release 6.0.3

the PATH variable must contain the directory where shared libraries (DLLs) are present.

11.3 Using Different Compilers

By default, the configure script detects the following compilers automatically in the path:

• Intel compiler (icc, icpc)

• GNU C/C++ (gcc, g++)

• Clang (clang, clang++)

• Clang/C2 (from Microsoft Visual Studio)

• Sun Studio (cc, cxx)

• IBM compiler (xlc, xlC)

If you want to use compilers other than the above ones, you should specify the compiler name
in the CC and CXX variables, and re-run the configuration script.

Note: Different compilers may have different command line options. If you use a com-
piler other than the default gcc, you may have to revise the CFLAGS_[RELEASE/DEBUG] and
LDFLAGS variables.

11.3. Using Different Compilers 43

	General Information
	Introduction
	Supported Platforms

	Windows - Using the MinGW64 Compiler Toolchain
	Supported Windows Versions
	Installing OMNeT++
	Configuring and Building OMNeT++
	Verifying the Installation
	Starting the IDE
	Environment Variables
	Reconfiguring the Libraries
	Portability Issues
	Additional Packages
	MPI
	Akaroa

	Windows - Using Windows Subsystem for Linux (WSL) version 2
	WSL 2 Requirements
	Enabling WSL 2 on Windows
	Installing an Ubuntu distribution
	Install VcXserver
	Install OMNeT++ Linux

	macOS
	Supported Releases
	Installing the Prerequisite Packages
	Enabling Development Mode in Terminal
	Debugging Unsigned Code
	Running OMNeT++ on Apple Silicon
	Additional Steps Required on macOS to Use the Debugger
	Downloading and Unpacking OMNeT++
	Environment Variables
	Configuring and Building OMNeT++
	Verifying the Installation
	Starting the IDE
	Using the IDE
	Reconfiguring the Libraries
	Additional Packages
	OpenMPI
	Akaroa

	Linux
	Supported Linux Distributions
	Installing the Prerequisite Packages
	Downloading and Unpacking
	Environment Variables
	Configuring and Building OMNeT++
	Verifying the Installation
	Starting the IDE
	Using the IDE
	Reconfiguring the Libraries
	Additional Packages
	Qtenv
	Akaroa
	Nemiver

	Ubuntu
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation
	Post-Installation Steps
	Setting Up Debugging

	Fedora 33
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation

	Red Hat
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation

	SELinux

	OpenSUSE
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation

	Generic Unix
	Introduction
	Dependencies
	Determining Package Names
	Qt
	MPI

	Downloading and Unpacking
	Environment Variables
	Configuring and Building OMNeT++
	Verifying the Installation
	Starting the IDE
	Optional Packages
	Akaroa

	Build Options
	Configure.user Options
	Moving the Installation
	Using Different Compilers

